An Introduction to Pathway Enrichment Analysis

Lei Kong, Ph.D.
What is Pathway?

• **Wikipedia:**

 • **Genetic pathway** - a group of interacting genes

 • **Metabolic pathway** - a series of cellular chemical reactions

 • **Signalling pathway** - a series of interactions to affect gene expression

• In summary, a pathway has a set of genes related to a specific biological function and describes the relationships between the genes.
KEGG Pathway Database

- KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction and reaction networks for:
 - **1. Metabolism**
 - **2. Genetic Information Processing**
 - **3. Environmental Information Processing**
 - **4. Cellular Processes**
 - **5. Organismal Systems**
 - **6. Human Diseases**
What is Pathway Enrichment Analysis

• The aim is to give a number (score, p-value) to a pathway
 • Compared to other pathways, are there more genes in the pathway differently expressed (up-regulated/downregulated)?
 • Can we give a number (p-value) to the probability of observing these changes just by chance?
Typical Pathway Enrichment Analysis Application Scenario

RNA-Seq Workflow

Pathway Enrichment Analysis
- KOBAS
- DAVID
- LEGO
- ...

Differentially Expressed Genes
Why Pathway Enrichment Analysis?

• To reduce data dimensionality by arranging genes into pathways.

• Helps interpret the data in the context of biological processes, pathways and networks.

Basic Assumption

• Genes involved in the same biological processes, functions, or localizations present correlated behaviors in terms of expression levels, signal intensities, allele occurrences, and so on.

•

• We can therefore apply statistical tests to find perturbed pathways.

Overview of existing pathway analysis methods

• Pathway analysis has become the first choice for gaining insight into the underlying biology of differentially expressed genes and proteins, as it reduces complexity and has increased explanatory power.
Overview of existing pathway analysis methods
First Generation: Over-Representation Analysis (ORA) Approaches

• First, an input gene list is created using a certain threshold or criteria.
• Then, for each pathway, input genes that are part of the pathway are counted.
• Next, every pathway is tested for over- or under-representation in the list of input genes.
• The most commonly used tests are based on the hypergeometric, chi-square, or binomial distribution.
Limitations of ORA

• First, the different statistics used by ORA (e.g., hypergeometric distribution, binomial distribution, chi-square distribution, etc.) are independent of the measured changes.
 • However, the information about the extent of regulation (e.g., fold-changes, significance of a change, etc.) can be useful in assigning different weights to input genes

• Second, ORA typically uses only the most significant genes and discards the others.
 • With this method, marginally less significant genes (e.g., fold-change = 1.999 or p-value = 0.051) are missed, resulting in information loss.

• Third, by treating each gene equally, ORA assumes that each gene is independent of the other genes.
 • However, biology is a complex web of interactions between gene products that constitute different pathways.
Second Generation: Functional Class Scoring (FCS) Approaches

- First, a gene-level statistic is computed using the molecular measurements from an experiment.

- Second, the gene-level statistics for all genes in a pathway are aggregated into a single pathway-level statistic.

- The final step in FCS is assessing the statistical significance of the pathway-level statistic.
FCS methods address three limitations of ORA

• First, they do not require an arbitrary threshold for dividing expression data into significant and non-significant pools. Rather, FCS methods use all available molecular measurements for pathway analysis.

• Second, while ORA completely ignores molecular measurements when identifying significant pathways, FCS methods use this information in order to detect coordinated changes in the expression of genes in the same pathway.

• Finally, by considering the coordinated changes in gene expression, FCS methods account for dependence between genes in a pathway, which ORA does not.
FCS software example: GSEA

GSEA is a computational method that determines whether an \textit{a priori} defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).

[Text and figure from the Broad Institute web pages for GSEA: http://www.broad.mit.edu/gsea/index.html]

the current version of the figure at the Broad site is slightly different from the one above
BIOS6660 shRNAs seq Gene Set Enrichment Analysis, Tzu L Phang, Robert Stearman, April 16, 2014
The rows represent the samples or chips, and the columns represent the genes.
- Genes on the left side are highly expressed on the top half (indicated by red color) and lowly expressed on the bottom half (indicated by blue color). The reverse is shown on the right-most genes.
- Created a gradient or ranked list corresponding to the degree of correlation with the two phenotypes.
• This is depicted nicely by the graph on the bottom of the figure, where the positive ranks on the left represent the correlation to the Disease phenotype and the negative ranks on the right signify the correlation to the Normal phenotype.

• The graph also generates a rank gradient that represents the order of the most up-regulated genes for the Disease sample on the left-most, and the most up-regulated genes for the Normal samples on the right-most.
Now, let’s hide the heatmap and replace the middle part of the figure with genes from a specific geneset, say genes from the Glycolysis pathway.

Each vertical blue bar represents a gene from the pathway, being mapped on the same location as the whole dataset.

Again, genes that are located on the left side are highly expressed on the Disease samples, and the opposite is true for the right-most genes.
Now, we are ready to demonstrate the GSEA algorithm.

The walk down algorithm basically scans the ranked gene list L, and when a member of S is encountered, an Enrichment Score (ES) is registered. This is illustrated on the top part of the figure below; when the ES started to build upon encountering more genes from the GeneSet S.
The more S genes is found, the higher the ES
But, when no S genes were encountered for a long walk down, as indicated on the middle section of the middle plot, the ES will decrease accordingly. In other words, a high ES relies intimately with the clustering of S genes in close proximity. In this example, we would conclude that the S genes have high degree of correlation with the Disease phenotype since most of the ES was gained from the left portion of the plot.
GSEA References

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Ameneh Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and Jill P. Mesirov

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a framework for organizing microarray data at the level of gene sets. The gene sets are defined based on prior biological knowledge, e.g., published information about biochemical pathways or expression profiles.

FCS Limitations

• First, similar to ORA, FCS analyzes each pathway independently.
• Second, many FCS methods use changes in gene expression to rank genes in a given pathway, and discard the changes from further analysis.
 • For instance, assume that two genes in a pathway, A and B, are changing by 2-fold and 20-fold, respectively. As long as they both have the same respective ranks in comparison with other genes in the pathway, most FCS methods will treat them equally, although the gene with the higher fold-change should probably get more weight.
 • However, considering only the ranks of genes is also advantageous, as it is more robust to outliers.
Third Generation: Pathway Topology (PT)-Based Approaches

- ORA and FCS methods consider only the number of genes in a pathway or gene coexpression to identify significant pathways, and ignore the additional information available from these knowledge bases.
- Pathway topology (PT)-based methods (Table 1; Table S3) have been developed to utilize the additional information.
Limitations

• True pathway topology is dependent on the type of cell due to cell-specific gene expression profiles and condition being studied. However, this information is rarely available and is fragmented in knowledge bases.
Thanks for Your Attention