Characterization of Bacterial Strains for Taxonomic Purposes

Man Cai

Sep 2014

The tenet for novel taxa characterization:

as comprehensively as possible.
Strain

Genetic-based characterization

- 16S rRNA gene
- Whole genome
- Phylogenetic tree
- DNA G+C content
- DNA-DNA hybridization
- Multilocus sequence analysis

Phenotypic characterization

- Morphology, physiology, biochemistry
 - Antibiotics resistance
 - Substrate utilization
 - Growth tolerance
 - Enzyme activity
 - Cell shape
 - Staining

Chemical characterization

- Fatty acids
- Polar lipids
- Polyamines
- Techoic acids
- Mycolic acids
- Peptidoglycan
- Lipopolysaccharides
- Respiratory lipoquinones
- Hydrophobic side chains of lipids
- Isoprenoid-based ether-linked lipids
I. Strains

• Isolation method: Spread Plate Method

• location (eg. GPS, latitude/ longitude)

• Environment (eg. pH, salinity, temperature, chemical composition)

• Designations (eg. CGMCC 1.9159T= DSM 22955T)
I. Strains

Bacillus Cohn 1872, *genus*. (Type genus of the order *Bacillales* Prévet 1953 [Approved Lists 1980]; type genus of the family *Bacillaceae* Fischer 1895 [Approved Lists 1980]).

Type species: *Bacillus subtilis* (Ehrenberg 1835) Cohn 1872 (Approved Lists 1980).

Etymology: L. masc. n. *bacillus*, a small staff, a wand, a rod.

Bacillus subtilis (Ehrenberg 1835) Cohn 1872, *species*. (Type species of the genus.)

Type strain: (see also StrainInfo.net) strain ATCC 6051 = ATCC 6051-U = CCM 2216 = BCRC (formerly CCRC) 10255 = CCUG 163 B = CFBP 4228 = CIP 52.65 = DSM 10 = IAM 12118 = IFO (now NBRC) 13719 = IFO (now NBRC) 16412 = IMET 10758 = JCM 1465 = LMG 7135 = NCAIM B.01095 = NCCB 70064 = NCCB 32009 = NCCB 53016 = NCIMB 3610 (formerly NCDO 1769) = NCTC 3610 = NRRL B-4219 = NRRL NRS-1315 = NRRL NRS-744 = VKM B-501.

Sequence accession no. (16S rRNA gene) for the type strain: AJ276351.

Synonym: *"Vibrio subtilis"* Ehrenberg 1835.

II. Genetic-based characterization

• 16S rRNA gene

• High quality (almost complete, no ambiguities)
II. Genetic-based characterization

• 16S rRNA gene
 • Multiple alignment (use expert-maintained seed alignments)
 ARB: www.arb-home.de
 RDP: http://rdp.cme.msu.edu
 SILVA: www.arb-silva.de

 Alternative:
 Robust multiple alignment programs (CLUSTAL_X, W..., MEGA, T-COFFEE, MUSCLE) + by manual editing.

• Pairwise nucleotide sequence similarity
 Calculation programs: eg. ARB, PHYDIT, jPHYDIT, EzTaxon (www.eztaxon.org)
 Don’t use local alignment programs (eg. BLAST and FASTA).
II. Genetic-based characterization

• Assignment to defined taxa
 • The first indication of novel species
 16S rRNA gene sequence similarity $< 97%$
 $> 97%$
 DNA–DNA hybridization
 • The first indication of separate genera
 16S rRNA gene sequence similarity above $\sim 95%$
 To be tested by other methods to establish whether separate genera are present.
II. Genetic-based characterization

• Assignment to defined taxa
 • DNA–DNA hybridization
 • DDH value equal to or higher than 70 % as a suitable threshold for the definition of members of a species
 • Provided DDH data:
 type strain of novel species
 all other strains of novel species
 type strains of the closest related species
 • Standard deviations of at least three analyses must be given.
II. Genetic-based characterization

- Assignment to defined taxa
- DNA–DNA hybridization
II. Genetic-based characterization

• Phylogenetic tree

 • Use high quality sequences. Do not mix full and partial sequences.
 • Use high quality alignments.
 • Apply alternative treeing methods (eg. Neighbor-joining, maximum-parsimony, maximum-likelihood methods).
 • Never use sequences from single distantly related organisms as outgroup.
 • Only bootstrap proportions of 70 or higher presented in the dendrogram.
II. Genetic-based characterization

• Other genetic-based characterization

 • Multilocus sequence analysis (MLSA)

 • Nucleic acid fingerprinting (strain level)

 • Whole genome sequences

 • DNA G+C content
III. Phenotypic characterization
-- morphology, physiology, biochemistry

• Morphology
 • Morphological criteria
 • Cell shape and size – supported by photographs
 • Characteristic features (eg. stalks, prosthecae, budding or branching, cell aggregates)
 • Spore formation
 • Location of flagella
 • Motility (form, speed)
 • Intracellular structures
 • Colony shape and size
 • Cellular pigments
III. Phenotypic characterization
--morphology, physiology, biochemistry

• Morphology

• Staining

 • Gram stain (the reaction may alter as the cells age)

 • Acid-fast staining (strains containing mycolic acids)

 • Sudan Black staining (stains containing lipophilic cellular inclusions, eg. polyhydroxybutyric acid)
III. Phenotypic characterization
 --morphology, physiology, biochemistry

• Physiology and biochemistry
 • The growth tolerance (e.g. pH, temperature, NaCl concentration)
 • Enzyme activity, substrate utilization, antibiotics resistance, etc.

Note:
• To test with identical media and conditions or at least comparable.
• To compare with type strain of type species of appropriate genera.
• To analyze including strains of the most closely related taxa rather than using the previously published data.
III. Phenotypic characterization
-- chemical characterization

• Respiratory lipoquinonones (cell membrane)

• Three structural classes:

 Benzoquinones

 • ubiquinones (classes α, γ, β-proteobacteria)
 • rhodoquinones (some of the classes α, γ-proteobacteria)
 • plastoquinones

Naphthoquinones: * include menaquinones, demethylmenaquinones, mono-
 methylmenaquin, dimethylmenaquinones and menathioquinones.
 * the vast majority of Bacteria and Archaea known to synthesize naphthoquinone (menaquinone) derivatives.

Benzothiophene derivatives: members of the order Sulfolobales
III. Phenotypic characterization -- chemical characterization

• Polar lipids (cell membrane)

• Vast diversity in prokaryotes and have yet to be fully elucidated.

• Document the lipids by image with all visualized known and unidentified lipids.

• Good image quality for publication:
 8 bit, grey scale, 7 × 7 cm, 300 d.p.i.
III. Phenotypic characterization

-- chemical characterization

• Peptidoglycan (outer cell layers)
 • Analysis is requirement for all novel Gram-positive species description.
 • Analysis includes characteristic diamino acid in the cross-linking peptide, peptidoglycan type (A or B), mode of cross-linkage, complete amino acid composition.

• Mycolic acids (outer cell layers)
 • occur in certain high G+C Gram-positive bacteria
 • additional taxonomic markers
III. Phenotypic characterization
-- chemical characterization

• Other constituents

• Lipopolysaccharides (LPS)
• Polyamines
• Hydrophobic side chains of lipids
• Non- /Isoprenoid-based ether-linked lipids
IV. Minimal standards

• To provide detailed information on the characterization of specific organisms, and complement these guidelines.

• Aerobic, endospore-forming bacteria (Logan et al., 2009)
• Anoxygenic phototrophic bacteria (Imhoff & Caumette, 2004)
• Genus Brucella (Corbel & Brinley Morgan, 1975a, b)
• Family Campylobacteraceae (Ursing et al., 1994)
• Family Flavobacteriaceae (Bernardet et al., 2002)
• Order Halobacteriales (Oren et al., 1997)
• Family Halomonadaceae (Arahal et al., 2007; Arahal et al., 2008)
• Genus Helicobacter (Dewhirst et al., 2000)
• Methanogenic bacteria (Archaea) (Boone & Whitman, 1988)
• Suborder Micrococcineae (Schumann et al., 2009)
• Class Mollicutes (Division Tenericutes, Order Mycoplasmatales) (International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes, 1979; International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mycoplasmatales, 1972; Brown et al., 2007)
• Genera Moraxella and Acinetobacter (Bøvre & Henriksen, 1976)
• Genus Mycobacterium (Lévy-Frédault & Portaels, 1992)
• Family Pasteurellaceae (Christensen et al., 2007)
• Root and stem nodulating bacteria (Graham et al., 1991)
• Staphylococci (Freney et al., 1999)
• Genus Streptomyces (not a minimal standard, but a standard reference work, Shirling & Gottlieb, 1966)
Thanks for your attention!